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Abstract We propose the use of parametric bootstrap methods to investigate the

finite sample distribution of the maximum likelihood estimator for the parameter

vector of a stochastic mortality model. Particular emphasis is placed on the effect

that the size of the underlying population has on the distribution of the MLE in finite

samples, and on the dependency structure of the resulting estimator: that is, the

dependencies between estimators for the age, period and cohort effects in our

model. In addition, we study the distribution of a likelihood ratio test statistic where

we test a null hypothesis about the true parameters in our model. Finally, we apply

the LRT to the cohort effects estimated from observed mortality rates for females in

England and Wales and males in Scotland.

Keywords Small population � Age effect � Period effect � Cohort effect � Bootstrap �
Parameter uncertainty � Systematic parameter difference � Likelihood ratio test �
Power of test

1 Introduction

Stochastic mortality models are widely used as risk management tools in the

insurance and pensions industry with the main application being the generation of

plausible scenarios for future mortality rates. Many stochastic mortality models

have been introduced in the last few decades. When new models have been

developed the objective was mostly to improve the goodness of fit of the model to

mortality data observed in relatively large populations: the Lee-Carter model and its
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refinements (e.g. [3, 23, 31]) have been developed to provide a good fit to the

mortality rates observed in the United States, England and Wales and the population

of UK male assured lives; while the Cairns-Blake-Dowd ([6]) model (CBD) was

introduced for modelling the England and Wales males population at higher ages.

In contrast, actuaries will often face the problem of modelling the mortality

experience of much smaller populations, for example, the members of a pension

scheme. Empirical research has found that mortality rates of smaller populations

exhibit significantly more variability compared to the observed rates in larger

populations. Furthermore, models that fit large countries well, might not be

appropriate for smaller populations, for example, [3] showed that the Lee-Carter

model provides a rather poor fit to the mortality experience of smaller populations.

A related issue is that empirical data from smaller populations might only be

available for a relatively short period, which makes mortality projections rather

uncertain. As a result, a number of recent papers have aimed to develop models

specifically for smaller populations: for example, the Saint Model of [18].

A common assumption for many of the proposed models is that the observed

numbers of deaths are realisations of random variables with a Poisson distribution

given the underlying mortality rates. The estimation of parameters of any such

model is therefore based on samples from a Poisson distribution, and, as always in

statistics, parameter uncertainty is related to the sample size. Furthermore, many

results about the distribution of estimators and corresponding confidence intervals

rely on the Maximum Likelihood theorem and large sample sizes.

The increased uncertainty about estimated parameters for small populations

results in high levels of uncertainty about projected mortality rates. As a

consequence future realised mortality rates will not only diverge from projected

rates due to future sampling variation caused by the Poisson distribution, but might

also diverge from projections since the projections themselves are uncertain.

In the actuarial literature, simulation techniques have been proposed for dealing

with uncertain parameters and projected mortality rates. For example, [24]

investigated mortality uncertainty by applying a block bootstrap method on the

Lee-Carter model, and [4] proposed Poisson bootstrap methods for mortality

forecasting. [6] studied the parameter uncertainty of the two factor CBD model by

adopting a Bayesian approach. Czado et al. and Pedroza [12, 29] carried out the first

Bayesian analysis using Markov Chain Monte Carlo (MCMC) of the Lee-Carter

model, with further work by [21, 22]. Reichmuth and Sarferaz [30] applied MCMC

to a version of the [31] model. Cairns et al. (2011) applied MCMC to a two-

population Age-Period-Cohort model by combining the Poisson likelihood for the

deaths counts with time series likelihood functions for the latent random period and

cohort effects.

However, to the best of our knowledge, bootstrap methods have not been applied

in a systematic way to investigate the impact of the size of a population on

parameter and projection uncertainty. This is the focus of our research in this paper.

We firstly apply Poisson parametric bootstrap methods to investigate how the

variation of parameter estimates and projections is affected by the size of a

population. The specific mortality model that we consider is a second generation

CBD model with added cohort effect: see Sect. 2 for details. We vary the size of the
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population by assigning weights to a chosen benchmark population, e.g. England

and Wales males. In simulation studies we find that the size of the population has a

significant effect on the variation of parameter estimates and projections.

Although we apply a weight to the benchmark population (i.e. scale it down), we

ensure that the mortality rates of the constructed small populations are equal to the

fitted mortality rates of the benchmark population. In such a situation, uncertainty in

projected mortality rates will be reduced if information from the benchmark

population parameter estimates can be used for fitting smaller populations. This

raises the question of how we can test for systematic differences between the

parameters driving mortality rates in a small population and a given null hypothesis

about those parameters, where the null hypothesis might have been obtained from a

model fitted to a much larger population. If no significant differences can be found

then it seems reasonable to use elements of the large population model fit to assist in

generation of scenarios for the small population. We therefore investigate the

properties of a likelihood ratio (LR) test for all or some of the estimated parameters,

and, in particular, consider the distribution of the test statistic based on the bootstrap

simulations. This allows us to investigate the power of the LR test and the effect of

varying population sizes on the rejection rates. We find that the population size has a

strong effect on the probability of a type II error. This is particularly relevant for

pension schemes since the acceptance of an incorrect null hypothesis might lead to

inaccurate mortality assumptions. To investigate the financial consequences of the

resulting misspecified model, we consider annuity prices based on different

assumptions about the underlying parameters of our model.

We apply the LR test in an empirical study. The null hypothesis for that study is

the estimated cohort effect for males in England and Wales. With this null

hypothesis we then carry out hypothesis tests using, first, mortality data for females

in England and Wales and, second, males in Scotland to check if their cohort effects

are significantly different from the estimated cohort effect for males in England and

Wales. We find for both populations that the estimated cohort effect is significantly

different from that in the null hypothesis.

The remainder of the paper is organised as follows. Section 2 introduces the

model, assumptions and the notations we apply. Section 3 discusses the process of

simulation and investigates the distribution of the maximum likelihood estimates,

the correlation between the estimates and how these will be affected by changing

the population size. In Sect. 4, we investigate the effect of the population size on

forecasting by projecting the parameters as well as the mortality rates. Section 5

introduces a likelihood ratio test for testing systematic deviations of the true

parameters from a given null hypothesis. The power of the likelihood ratio test is

also analysed and we then investigate how significant the impact of shifting and

scaling parameters is on the fitted mortality rates and corresponding annuity prices

in Sect. 6. Finally, Sects. 7 and 8 include the LRT for testing a null hypothesis about

the cohort effect only, and an empirical example for this test is provided. Section 9

provides our final conclusions.
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2 The model

We denote by D(t, x) the number of deaths during calendar year t ¼ t1; . . .; tny at age

x ¼ x1; . . .; xna and by E(t, x) the corresponding central exposure to risk.

We will fit the following Poisson model to the observed death data, see [8]:

Dðt; xÞjh� Poisðmðh; t; xÞEðt; xÞÞ ð1Þ

mðh; t; xÞ ¼ � logð1� qðh; t; xÞÞ ð2Þ

logit qðh; t; xÞ ¼ jð1Þt þ jð2Þt ðx� xÞ þ jð3Þt ððx� xÞ2 � r̂2xÞ þ cð4Þt�x ð3Þ

where the parameter vector h is given by

h ¼ ðjð1Þt ; jð2Þt ; jð3Þt ; cð4Þc Þ

with the following interpretations:

• jðiÞt is a period effect in year t ¼ t1; . . .; tny for each i ¼ 1; 2; 3,

• j ¼ fjð1Þ; jð2Þ; jð3Þg, where jðiÞ ¼ fjðiÞt gt¼t1;...tny
for i ¼ 1; 2; 3,

• cð4Þc is the cohort effect for the cohort born in year c ¼ t � x,

• cð4Þ ¼ fcð4Þc gc¼t1�xna ;...;tny�x1

• �x is the mean of the age range we use for our analysis, and

• r̂2x is the mean of ðx� �xÞ2.

The reason for including the cohort effect is that it is a well established feature in

some populations such as England and Wales [8]. We do not claim that this model is

necessarily the best model for the datasets to be considered. However we select the

model based on a particular set of model selection criterion studied in Ref. [8]. The

choice of ‘‘M7’’ here reflects the work of Ref. [8] namely that we want to use a

model that fits the males from England and Wales well.

It is well known that the parameters in model (3) are not identifiable without

imposing constraints on their values. Nielsen and Nielsen [27] discussed the impact

of identifiability problems within stochastic mortality models on parameter

estimation, hypothesis testing and forecasting. Currie [11] discussed modelling

with M7 by writing the model as a generalized linear model with a non-full rank

design matrix. We follow Ref. [8] and apply the following constraints on h:
X

c2C
cð4Þc ¼ 0;

X

c2C
ccð4Þc ¼ 0;

X

c2C
c2cð4Þc ¼ 0 ð4Þ

where C ¼ t1 � xna ; . . .; tny � x1 is the set of all years of birth in a given dataset. In

this study, identifiability constraints are defined as part of our model system to

ensure all parameters are identifiable and provide a coherent framework for the

consideration of confidence intervals and for hypothesis testing. One can freely
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adopt any reasonable set of constraints to the model and the study would be focusing

on the results given the selected constraints.

To estimate the parameters in (3) we apply maximum likelihood estimation. The

log-likelihood function in our model is

lðh;D;EÞ ¼
X

t;x

Dðt; xÞlog½Eðt; xÞmðh; t; xÞ� � Eðt; xÞmðh; t; xÞ � log½Dðt; xÞ!� ð5Þ

where mðh; t; xÞ is given by (2) and (3). It is worth noticing that both the fitted

mortality rates and the log-likelihood function lðh;D;EÞ are invariant to the choice

of the identifiability constraints.

As mentioned earlier, in this paper we are concerned with the consequences of

small exposures, or population sizes, on the distribution of the maximum likelihood

estimator (MLE) ĥ of h. To study the distribution of the MLE ĥ we will simulate

death data D(t, x) from the model in (1–3) using a given parameter vector h0 and

different exposure sizes.

To ensure that our results are relevant for typical values of h we first fit our model

to death and exposure data observed in England and Wales during the years 1961 to

2011 for males aged 50 to 89. Note that we do not claim that this is the only choice

of dataset. Any large population plus any model that is known to fit it well can be

used for this study. The reason for the choice of dataset is that we have familiarity

with the England and Wales data and the selected model fits the similar dataset well

in Ref. [8]. We then fix h0 to be equal to the estimated parameter vector ĥ
EW

for this

data. Note that this is only an example for the true parameter vector h0 and our

analysis can be applied to other choices of h0. Mortality data for England and Wales

are obtained from the Human Mortality Database.1 Note that we do not exclude

short cohorts from the estimation since we are interested in how the MLE fits the

short cohorts and the impact of small population sizes on the estimates.

The different exposure sizes used to simulate data in the remainder of this paper

will be relative to the exposure E0ðt; xÞ for a benchmark population. For reasons of

practical relevance and consistency with our choice of h0 the benchmark population

is the male population in England and Wales unless stated otherwise.

3 Distribution of MLE in finite samples

For any given parameter vector h0 and benchmark exposure E0ðt; xÞ we define the

small-sample exposure as

Ewðt; xÞ ¼ wE0ðt; xÞ

for a constant w� 1. Table 1 shows the exposures for males in England and Wales

in our dataset in year 2011 with selected ages (50, 60, 70, 80, 89). The total

exposure for males in England and Wales in 2011 across all ages from 50 to 89 is

1 Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for

Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data

downloaded on 16 February, 2014).

Small population bias and sampling effects... 197

123



9, 049, 613. The weights we consider in this paper are 1, 0.1, 0.01 and 0.001. The

smallest population will therefore have an exposure of 43 at age 89 and 382 at age

50.

We then simulate N scenarios for the death counts Dwðt; xÞ using the model in (1–

3) with h ¼ h0. Through our simulation we obtain N independent scenarios Dw
j ðt; xÞ

for the death counts with

Dw
j ðt; xÞ� Pois

�
mðh0; t; xÞwE0ðt; xÞ

�
for all j ¼ 1; . . .;N: ð6Þ

A more general approach would be to consider a weights matrix W ¼ fwt;xg
allowing for weights to depend on age and calendar year. This would be particularly

relevant when our proposed methodology is applied to investigate the mortality of

members of a pension scheme with a very different age structure than the age

structure of the overall population in England and Wales. However, for clarity of

presentation, we only consider a constant weight applied to all ages and calendar

years.

3.1 MLE

To obtain MLEs for ĥ
w

j for each simulated scenario j and each w we maximise the

log-likelihood function lðh;Dw
j ;E

wÞ as given in (5) subject to the constraints in (4),

that is,

ĥ
w

j :¼ arg max hlðh;Dw
j ;E

wÞ: ð7Þ

Classical sampling theory tells us that

ffiffiffiffi
w

p
ĥ
w

j � h0
� �

�!Dist Nð0;HÞ; as w ! 1

for some positive semi definite matrix H (see Appendix A for further discussion).

Therefore, we would expect that, even in a finite sample, the co-variance of the

distribution of ĥ
w

j is approximately to w�1H and the correlations between different

components of ĥ
w

j are approximately independent of the relative population size w.

Using the simulated sample ĥ
w

1 ; . . .; ĥ
w

N we can investigate the finite-sample

covariance and correlation matrices of ĥ
w
. In Fig. 1 we plot a graphical

representation of the correlation matrices of ĥ
w

j that we obtain for two values of w.

We conclude from Fig. 1 that there are no significant differences between the

empirical correlation matrices obtained from different population sizes, as

Table 1 The exposure of males in England and Wales (EW) in the dataset in year 2011 with selected

ages (50, 60, 70, 80, 89)

Age x 50 60 70 80 89

Exposure EW 381, 797 307, 825 213, 455 134, 966 42, 640
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predicted. However, individual components of ĥ
w
are not independent from each

other as we would expect given the model in (1–3).

To investigate the finite-sample distribution of the MLE ĥ
w
further we plot the

empirical mean together with 90% confidence intervals for each of the components

of ĥ
w
in Fig. 2.

We find for all population sizes considered that the empirical means of the

simulated estimates fluctuate around the true parameter values h0 (solid line), which

indicates that the MLE is approximately unbiased for all considered population

sizes. However, the standard deviation of the estimator depends strongly on the size

of the population, increasing significantly as the exposures get smaller as can be

seen from the width of the confidence intervals.

The relative levels of the lines in the graphs on the right hand side of Fig. 2 show

that the level of fluctuation increases approximately by a factor
ffiffiffi
n

p
if the population

size is reduced by a factor 1 / n, which is consistent with the asymptotic covariance

matrix being proportional to 1 / w. It also suggests that the variance is generally

stable for all the period effects over years, which is not the case for the cohort effect

with a wave shaped pattern. We notice that the standard deviation of cð4Þc;w widens out

considerably at both ends, reflecting the reducing number of observations that we

have for the younger and older cohorts. It is worth recalling that the finite-sample

distribution of the MLE ĥ
w
varies if different sets of constraints are defined in the

model system: that is, for a given w, the shapes of the various confidence intervals

might be different if other identifiability constraints are used. The impact of the

identifiability constraints in our study can be removed by calculating the following

quantities of the point estimates: D3ĵð1Þ;wt , D2ĵð2Þ;wt , Dĵð3Þ;wt and D3ĉð4Þ;wc for

w ¼ 1; 0:1; 0:01; 0:001, where Dk represents the kth order difference. The finite-
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Fig. 1 The empirical correlation matrix of the simulated parameter estimates ĥ
w
for different values of

the population size w ¼ 1 and w ¼ 0:001. The grid lines at 51.5, 102.5 and 153.5 are used to visually

separate the parameters jð1Þt , jð2Þt , jð3Þt , cð4Þc from each other in both dimensions. For instance, the bottom

left rectangle contains the correlations for ĵð1Þ;wt for the 51 years from 1960 to 2011
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sample distribution of these quantities and the corresponding standard deviation are

shown in Fig. 3, where unsurprisingly the right column implies that our conclusion

regarding to the proportional relationship between the variance and the population

size holds.
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4 Mortality projections

While fitting the model in (1–3) to observed mortality data only requires the

estimation of the period effects jt ¼ ðjð1Þt ; jð2Þt ; jð3Þt Þ0 and the cohort effect cð4Þc ,

projecting mortality rates into the future requires a model for values of jt for t[ tny
where tny is the last year for which mortality data are available. Similarly, future

values of the cohort effect cð4Þ are also required.

The most common approach to obtain future values of j and cð4Þ is to consider

these parameter vectors as observed trajectories of stochastic processes and fit a

parametric time series model to each trajectory. In the following we will fit a three-

dimensional random walk to jt and a stationary AR(1) model to cð4Þc , as in Ref. [8].

We will then discuss the estimation of the parameters of those models based on the

values of h0 and ĥ
w

j for different values of w. This will allow us to investigate the

impact of the relative population size w on the estimators for the parameters of the j
and cð4Þ processes.

For the estimation of those parameters and the projections of the period effects

and the cohort effect we will consider two approaches. Firstly, we will use a

frequentest approach to obtain point estimates of the process parameters ignoring

any uncertainty about those estimates. In our further analysis we will follow a

Bayesian approach to incorporate parameter uncertainty into our mortality

projections.

4.1 Projecting period effects

As mentioned above, we model the period effects jt as a three-dimensional normal

random walk.

Djt ¼ lþ L�t ð8Þ

where Djt ¼ jt � jt�1 and the �t ¼ ð�ð1Þt ; �
ð2Þ
t ; �

ð3Þ
t Þ0 are independent random vectors

with a multivariate standard normal distribution. The parameter vector l is the 3� 1

drift vector of the random walk and L is the 3� 3 Cholesky decomposition of the

covariance matrix V ¼ LL0.

4.1.1 Point estimators

Having generated N scenarios for the number of deaths according to (6) and having

estimated the parameter vector ĥ
w

j in each scenario as in (7), we can now apply the

bFig. 2 The distribution of MLEs: the mean and confidence interval (left column) and the log-scaled

standard deviation (right column) of the MLEs of jð1Þ;wt ; jð2Þ;wt ;jð3Þ;wt ; cð4Þ;wc , with respect to year t and year

of birth c respectively, of populations with w ¼ 1 (dashed line), w ¼ 0:1 (long dashed line), 0.01 (dotted
line), 0.001 (dot dashed line), together with the parameter estimates for the England and Wales
population (solid line). Note: the upper bound of the CI in the left column is the 95% quantile of the
distribution and the lower bound is the 5% quantile
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Fig. 3 The distribution of kth order difference of MLEs: the mean and confidence interval (left column)

and the log-scaled standard deviation (right column) of D3ĵð1Þ;wt , D2ĵð2Þ;wt , Dĵð3Þ;wt and D3ĉð4Þ;wc , with

respect to year t and year of birth c respectively, of populations with w ¼ 1 (dashed line), w ¼ 0:1 (long
dashed line), 0.01 (dotted line), 0.001 (dot dashed line), together with the parameter estimates for the
England and Wales population (solid line). Note: the upper bound of the CI in the left column is the 95%
quantile of the distribution and the lower bound is the 5% quantile
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random walk model to the period effects in h0 and ĥ
w

j for every generated scenario j.

We then apply the usual (i.e. maximum likelihood) point estimators l̂wj and V̂
w

j for

each simulated scenario of Dw
j ðt; xÞ. The estimators for the three components of l̂wj

(scenario j) are

l̂wj ðiÞ ¼
1

ny � 1

Xtny

t¼t1þ1

ðĵðiÞ;wt;j � ĵðiÞ;wt�1;jÞ; i ¼ 1; 2; 3 ð9Þ

and the entries of the estimated 3� 3 covariance matrix V̂
w

j are

V̂
w

j ði; kÞ ¼
1

ny � 1

Xtny

t¼t1þ1

h
DĵðiÞ;wt;j � l̂wj ðiÞ

� �
DĵðkÞ;wt;j � l̂wj ðkÞ

� �i
; i; k ¼ 1; 2; 3:

ð10Þ

The corresponding estimators for l and V for the true trajectory h0 are defined

similarly.

4.1.2 Bayesian estimation—parameter uncertainty

As mentioned earlier we model uncertainty about the parameters l and V by

applying a Bayesian approach to estimation. We denote by p the density of the prior

joint distribution of the two parameters. Assuming that we have no prior knowledge

about the true values of l and V, we use the Jeffreys prior density

pðl;VÞ / jV j�
3
2;

where |V| is the determinant of V (see for example, [16]). Using this prior distri-

bution in each scenario j, the posterior distribution is given by the inverse Wishart

distribution for V and a multivariate normal distribution for l, that is,

~V
w

j

� ��1

jDĵwj � ;Wishartðny � 2; ðny � 1Þ�1ðV̂w

j Þ
�1Þ ð11Þ

~lwj j ~V
w

j ;Dĵ
w
j �Nðl̂wj ; ðny � 1Þ�1 ~V

w

j Þ ð12Þ

where l̂wj and V̂
w

j are the estimates obtained from ĥ
w

j as defined in (9) and (10).

4.1.3 Empirical comparison

For our empirical study we simulate N ¼ 1000 scenarios for different values of w

and plot the empirical density of the point estimator l̂w in (9) based on the sample

l̂w1 ; . . .; l̂
w
N on the left hand side of Fig. 4. To incorporate parameter uncertainty we

draw a further sample of size M ¼ 100 from the posterior distribution of ~lwj in (12)

in each scenario j ¼ 1; . . .;N. The empirical density of ~lwj from these N �M

realisations is shown on the right hand side of Fig. 4.
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By comparing the densities in the two columns of that figure we observe that the

additional parameter uncertainty increases the variance of the empirical distribu-

tions of the drift estimators. This can be explained by investigating the source of

uncertainty to the drift. The variation to the point estimator l̂wðiÞ with no allowance

for parameter uncertainty comes from the Poisson noise in the number of deaths
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Fig. 4 The impact of population size on the distribution of the random walk drift, from population of
w ¼ 1 (dotted line), w ¼ 0:1 (long-dashed line), w ¼ 0:01 (solid line), w ¼ 0:001 (dot dashed line) and
England and Wales (vertical line). The left column is the density of drift without allowance to the
parameter uncertainty; the right column is the density of drift with allowance to the parameter uncertainty
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from the bootstrap simulations, while the variance of the Bayesian estimator ~lwðiÞ
with allowance for extra parameter uncertainty also includes the uncertainty

(Eq. 12) from the posterior distribution given the Poisson noise.

We also find in Fig. 4 that the size of a population affects the uncertainty about

the drift vector l. The variance of the empirical finite sample distribution of both

estimators, l̂ and ~l decreases significantly when the population size increases,

although the difference between w ¼ 1 and w ¼ 0:01 is rather small as is

particularly obvious for the Bayesian estimator ~l Fig. 5

However, for smaller values of w we find that the population size has a much

more pronounced effect on the variance. For example, the range of likely values of

~l0:001 is significantly wider than the range of values of ~l0:1 and ~l1 reflecting the

uncertainty about lw that we have already observed in Fig. 2 top left. The same

argument applies to the point estimators l̂.
To investigate parameter uncertainty further we calculate the standard deviations

for the distributions of l̂ and ~l in Fig. 4. Those standard deviations are shown in

Table 2. We observe that the standard deviation of the point estimator l̂ is increased

approximately by a factor
ffiffiffiffiffi
10

p
if the population size is reduced by a factor 10. The

situation becomes more complicated when for the Bayesian estimator ~l since the
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Fig. 5 The effect of removing the cohort effects of short cohorts on the distribution of the parameter
estimators of the AR(1) model for w ¼ 1. We investigate the distribution of parameter estimates when the
first and last 1, 2, 3, 4, 5, 6 cohorts are removed

Small population bias and sampling effects... 205

123



variance of the posterior distribution affects the finite sample variance of the

estimator. There is no obvious proportional relationship between population size

and variation, which suggests that the size of the population is not the only

determinant of the variance of ~l.

To investigate the impact of the relative population size w and the inclusion of

parameter uncertainty on the empirical distribution of the estimated co-variance

matrix V of the random walk in (8) we compare the empirical means of V̂ and ~V

obtained for different values of w. The means of the estimated co-variance matrix V̂

are:

E½V̂1� ¼
6:82� 10�4 2:12� 10�5 5:42� 10�7

2:12� 10�5 1:41� 10�6 2:99� 10�8

5:42� 10�7 2:99� 10�8 4:30� 10�9

0

B@

1

CA

E½V̂0:01� ¼
18:7� 10�4 � 1:52� 10�5 4:61� 10�6

�1:52� 10�5 1:25� 10�5 � 1:89� 10�7

4:61� 10�6 � 1:89� 10�7 0:99� 10�7

0

B@

1

CA

and the mean values of the Bayesian estimator ~V are

E½ ~V1� ¼
7:58� 10�4 2:37� 10�5 6:06� 10�7

2:37� 10�5 1:58� 10�6 3:35� 10�8

6:06� 10�7 3:35� 10�8 4:79� 10�9

0
B@

1
CA

E½ ~V0:01� ¼
20:90� 10�4 � 1:74� 10�5 5:11� 10�6

�1:74� 10�5 1:39� 10�5 � 2:10� 10�7

5:11� 10�6 � 2:10� 10�7 1:11� 10�7

0
B@

1
CA:

The corresponding estimated covariance matrices, VEW , for England and Wales

based on the single sample paths of jt and cc and the mean of Bayesian estimator

are

Table 2 The finite sample standard deviation of l̂ and ~l

i ¼ 1 i ¼ 2 i ¼ 3

Point estimator l̂wðiÞ w = 1 0.0000966 0.0000071 0.00000113

w = 0.1 0.0003050 0.0000217 0.00000343

w = 0.01 0.0009777 0.0000727 0.00001068

w = 0.001 0.0028787 0.0002206 0.00003387

Bayesian estimator ~lwðiÞ w = 1 0.00369 0.000173 0.00000936

w = 0.1 0.00396 0.000222 0.0000162

w = 0.01 0.00620 0.000505 0.0000458

w = 0.001 0.01689 0.001566 0.0001478
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rClV̂
EW ¼

6:70� 10�4 2:16� 10�5 4:94� 10�7

2:16� 10�5 1:31� 10�6 3:18� 10�8

4:94� 10�7 3:18� 10�8 3:30� 10�9

0
B@

1
CA

E½ ~VEW � ¼
5:49� 10�4 1:80� 10�5 1:05� 10�7

1:80� 10�5 1:07� 10�6 2:19� 10�8

1:05� 10�7 2:19� 10�8 3:06� 10�9

0
B@

1
CA

Comparing the mean values of V̂ and ~V with the estimates obtained from the

England and Wales data we find significant differences in the estimated covariances.

In particular, for smaller populations (e.g. w=0.01) sampling variation pushes up

significantly estimates of the covariance matrix. In addition, sampling variation also

widens the distribution of V around these mean values for smaller values of w. On

the other hand, for a given value of w, the inclusion of full Bayesian parameter

uncertainty moving from V̂ to ~V has rather less of an impact.

Finally, the projected parameters based on the Bayesian estimates ~l and ~V are

shown in Fig. 7. As we expected, the prediction intervals reflecting the uncertainty

about future values of the period effects are very wide for small populations. The

plots also suggest that the means of the co-variances are right biased compared to

the estimate for England and Wales. The variance of projection for all the

populations are much higher than the estimates, due to the additional normal

randomness added in the forecasting model by simulating the sample paths for j and

cð4Þ. However, the left column shows that there is no obvious proportional

relationship between the population size and projection variance. By investigating

the mean co-variance matrices, we find that the increase of E½Vw
3;3� from w ¼ 0:01 to

w ¼ 1 is of the highest among the three period effects, which suggests that the

standard deviation of projection for jð1Þt and jð2Þt is not as sensitive as jð3Þt to the

change of population size.

4.2 Projecting the cohort effect

As mentioned earlier we fit an AR(1) model to the cohort effect. We will not

investigate how additional parameter uncertainty influences mortality projections,

but will only use point estimates for the parameters in the AR(1) model. To be

precise, our model is given by

cð4Þcþ1 ¼ a0 þ ac cð4Þc � a0
� �

þ �cþ1 ð13Þ

Figure 2 shows that the variance of the estimated cohort effect is very large for the

very early and very late years of birth, in particular, for w ¼ 0:01 and 0.001. This is

a consequence of the very few observations available for those cohorts. We

therefore remove the cohorts with six or less observations. Cohorts are removed

equally from the beginning and the end.

However, removing short cohorts could significantly influence the estimated

values of the parameters. To investigate the effect of removing short cohorts in more
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detail we plot the empirical densities for the parameters in (13) based on the

estimated parameters in each simulated scenario j for w ¼ 1. We find that the

distribution of â0 is not significantly affected by removing cohorts which is also the

case for the estimated variance of �c when more than 4 cohorts are removed in total.

In contrast, âc is shifted to the left as more cohorts are removed. Further we notice

that the variance of the estimators for all three parameters stays approximately

unchanged regardless of how many cohorts are removed.

After having removed cohorts with six or less observations from the data, we fit

the AR(1) model in (13) to the rest of the cohort effects. The resulting density of the

parameter estimates of the model are shown in Fig. 6. All of the parameter estimates

and the standard deviation of error terms appear to be biased relative to the estimate

for England and Wales, regardless of the size of population. However, we find that

reducing the population size will greatly increase the mean bias as well as the

uncertainty.

We now forecast the cohort effect from ĉð4Þ;wtny�x1�6 ¼ ĉð4Þ;w1955 instead of ĉð4Þ;w1961 and the

result is shown in Fig. 6d. The variation in the projected cohort effects for the years
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Fig. 6 The comparison of the distribution of the parameter estimates of the AR(1)model between the
constructed populations w = 1 (dotted line), w = 0:1 (long dashed),w = 0:01 (solid), w = 0:001 (dot
dashed) and England and Wales (vertical line)
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1956 to 1961 now comes from the Poisson and Normal randomness, which is not as

great as variation at the two tails of the estimates observed in Fig. 2 where no

cohorts have been removed. Within the sample, the confidence intervals are

narrower for cohorts with greater numbers of observed years (ranging from 7 to 40)

and greater numbers of deaths since variance is reduced by having more number of

observations.

4.3 Projected mortality rates

Based on the projected period and cohort effects we can now turn to the projection

of mortality rates using our model in (1)–(3). Figure 8 shows the twenty-year

forward projections of mortality rates at ages 65 and 85. We compare the predicted

rates with and without the allowance for parameter uncertainty for all the

constructed populations with the projections based on the England and Wales data.

Unsurprisingly, the uncertainty about future mortality rates increases as the forecast
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Fig. 7 The comparison of twenty-year forward projection of jð1Þt;w ; j
ð2Þ
t;w ; j

ð3Þ
t;w ; c

ð4Þ
c;w, of weight w ¼

1; 0:1; 0:01; 0:001 with England and Wales. Note: We forecast the cohort effect from the last sixth cohort
instead of the very last one due to the cohort removal. The upper bound of the CI is the 95% quantile of
the distribution and lower bound is the 5% quantile. Parameter uncertainty is allowed in the projection
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(a) Projected mortality with allowance for Parameter Uncertainty
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Fig. 8 The log-scaled 90% prediction intervals of twenty-year forward mortality rate projections with
(upper plot, a) and without (lower plot, b) allowance for parameter uncertainty at ages 65 and 85, for
population size w ¼ 1 (dashed line), 0.1 (long dashed line), 0.01 (dotted), 0.001 (dot dashed line) and
England and Wales (solid line). Note that the solid line at the left end is the estimated mortality rate of the
England and Wales population, with length of 20 years. The upper bound of the prediction interval is the
95% quantile of the distribution and lower bound is the 5% quantile
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horizon increases. The other two factors which significantly influence the projection

uncertainty are age and population size.

Reducing the population size results in greater uncertainty about mortality

forecasts for both ages. For example, the uncertainty is much greater for the smaller

populations (w ¼ 0:01; 0:001) at both ages 65 and 85. This means that there is

considerable uncertainty about future mortality scenarios for a relatively small

pension scheme with significant implications for the risk management of such a

scheme.

Comparing parts (a) and (b) of Fig. 8 we find that the inclusion of parameter

uncertainty for the drift parameter l adds further uncertainty about the projected

mortality rates. This reflects the additional randomness from not having a

sufficiently long period of observed rates. We notice that the difference of variance

between including and excluding parameter uncertainty increases as time increases.

Thus parameter uncertainty becomes much less important when only relatively short

forecast horizons are considered. Similar results can be found in Fig. 6 of [6] which

shows the log scaled variance of both, with and without parameter uncertainty, for

the survival index. Our findings are also in line with results obtained by [20] who

have found that the uncertainty about the drift of the period effect in a Lee-Carter

model has little impact on the uncertainty of short term projections while it

significantly affects the uncertainty of long-term projections. This supports our

conclusion that the differences in the variances are tiny when the projection horizon

t is very small, and become more significant for long term projection. We notice that

for age 65 the intervals are not smooth in some years due to the cohort effect.

We also notice that age seems to affect the amount of uncertainty around the

central projection differently in small and large populations. To illustrate this further

we consider the standard deviation of projected mortality rates as a function of age

for a fixed projection horizon. Figure 9 shows the log-scaled standard deviation of

the projected mortality rates in the calendar year 2030 with respect to age. We find

in this figure that the variance is an increasing function of age if the population size

is rather large. In contrast, we find for the smallest population (w ¼ 0:001) that the
variance only starts to increase from about age 70 while it is constant or slightly

decreasing for younger ages. As we found in Fig. 8, at age 65 (and also at age 85),

the three largest populations have prediction intervals which are of similar width.

However, Fig. 9 shows that the much wider prediction intervals for the two smaller

populations seem to be less affected by age with the relative increase in the standard

deviation from age 65 to 85 being smaller than for the large populations. We are

also interested in how much of the forecast variation is due to the impact of

sampling variation and parameter uncertainty on the covariance matrix, V, and the

drift, l. To investigate this, we consider four experiments outlined below. Note that

we still projected the cohort effect, given the point estimates for population w with

the method introduced in Sect. 4.2 and we sample from the empirical distribution of

l̂ and V̂ without considering the Bayesian posterior.

1. Project mortality rates for each constructed population, while fixing the

parameters l and V of the random walk to the estimates obtained from the

England and Wales data.
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2. Project mortality rates for each constructed population, while fixing only the

drift l to the corresponding EW estimates and sample realisations of V̂ from its

empirical distribution.

3. Project mortality rates for each constructed population, while fixing only the

variance matrix V to the corresponding EW estimates and sample the drift

parameter from the empirical distribution of l̂.
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(b) Log-scaled standard deviation of projected mortality with no allowance for Parameter Uncertainty
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Fig. 9 The log-scaled standard deviation of projected mortality rates with (upper plot) and without
(lower plot) allowance for parameter uncertainty in year 2030 with respect to age for population size
w ¼ 1 (dashed line), 0.1 (long dashed line), 0.01 (dotted), 0.001 (dot dashed line) and England and Wales
(solid line)
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4. Project mortality rates when both V and l are samples from the empirical

distribution of V̂ and l̂.

The results are shown in Fig. 10. We find that fixing parameters has a significant

effect on mortality forecasting when populations are very small (w = 0.001) in

Fig. 10a. We can see that the widths of prediction intervals for our experiments 1

and 3 are much narrower than for experiments 2 and 4, and the difference of

variance is greater for long term projections. The major difference between these

two scenarios is that we fix the co-variance matrix V to its estimate obtained from

England and Wales data in experiments 1 and 3. Thus we conclude that a major

source of uncertainty for our mortality forecasts comes from the bias in the

estimated covariance matrix for small populations.

4.4 Summary

To summarise, forecasts levels of uncertainty in future mortality are biased upwards

for two reasons. First, and most obvious, the Poisson noise in the data biases up

estimates of the random walk covariance matrix to a significant extent (Fig. 10).

Second, when we include a Bayesian analysis of parameter uncertainty, uncertainty

in the random walk drift resulting from observation over a relatively small number

of years is pushed up by the small population bias in the covariance matrix, V. This

has its greatest impact in longer term forecasts, and less impact in the short term.

5 Likelihood ratio test for systematic parameter difference

We have seen that the size of a population has a substantial impact on the level of

uncertainty about the parameters of the model in (1–3) when this model is fitted to

the population’s mortality data. This raises the question whether the estimated
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Fig. 10 The projected mortality rates at age 65 and 85 for population sizes w ¼ 0:001 (left), w ¼ 0:1
(right) for the four experiments outlined in Table 4.3. The upper bound of the prediction interval is the
95% quantile of the distribution and the lower bound is the 5% quantile. Note that the solid line at the left
end is the true mortality rate of the England and Wales population, up to year 2011
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period and cohort effects in h ¼ ðjð1Þt ; jð2Þt ; jð3Þt ; cð4Þc Þ for a small a population are

significantly different from those in a given, typically much larger, reference

population. To address this question we apply a likelihood ratio test to test for

significant deviations of estimated parameters from a given null hypothesis using

the maximum likelihood estimator ĥ
w

j defined in (7) for simulated mortality data Dw
j

as in (6). We are particularly interested in the finite sample distribution of the test

statistic as compared to its asymptotic distribution. As in Sect. 3 we will use

simulated deaths scenarios to investigate the finite sample distribution and the

power of the likelihood ratio test (LRT) applied to mortality data. We will start with

a short review of the LRT.

5.1 Review of likelihood ratio test

The LRT used in this study follows the generalized form of the LRT as defined in

Ref. [19]. For a random variable X with a distribution that depends on a parameter

vector h, the likelihood function is defined as usual:

LðxjhÞ :¼
Yn

i¼1

fiðxijhÞ;

where fið:jhÞ is the probability density function of Xi given the parameter vector h.
We assume that h :¼ ðhr; hsÞ is a vector of r þ s parameters. The null hypothesis

and alternative for the LRT concern only the parameters in hr, that is,

H0 : hr ¼ hr0;H1 : hr 6¼ hr0: ð14Þ

In order to calculate the test statistic, we first find the MLE of ðhr; hsÞ, which leads

to the unconditional maximum of the likelihood function

ĥ :¼ ðĥr; ĥsÞ :¼ arg maxðhr ;hsÞLðxjhr; hsÞ: ð15Þ

We then find the MLE of hs assuming that the null hypothesis is fulfilled, that is,

~hs :¼ arg maxhsLðxjhr0; hsÞ: ð16Þ

In general ~hs � ~hsðhr0Þ 6¼ ĥs. We use the notation ~hsðhr0Þ to emphasis that ~hs is

conditional on the value of hr0.
We now define the test statistic in the usual way:

C :¼ �2log
Lðxjhr0; ~hsÞ
Lðxjĥr; ĥsÞ

: ð17Þ

[33] proved that when H0 holds, C asymptotically follows a central v2 distribution

with r degrees of freedom. From the central limit theorem, it follows that the v2r
distribution can be approximated by a normal distribution with mean r, given r is
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sufficiently large.2 Thus we expect that the distribution of C should approximately

be symmetric around r.

Before we start testing our null hypothesis, it is worth considering the testability

of the hypothesis.3 In our approach the constraints in Equation (4) in Sect. 2 are part

of the model and therefore the effective number of parameters that are identifiable is

the total number of parameters reduced by the number of constraints. In this paper,

we formulate the constraints in terms of the cohort effect c since we will in

particular consider the case hr ¼ c in our empirical study. If the test is about one of

the period effects we could reformulate the constraints in terms of that period effect

(strictly, therefore, a different model). In that way, the constraints are always

fulfilled under H0. In short, the constraints should be chosen such that the null

hypothesis fulfils the constraints. In other words, we are testing the null hypothesis

that the mortality experience is generated by mortality rates that follow model M7

with the constraints in Equation (4) and hr ¼ hr0 .
In the reminder of this section we will consider a null hypothesis about the entire

parameter vector h setting s ¼ 0. In Sect. 7 we will then consider a null hypothesis

about the cohort effect c only, that is s[ 0.

5.2 Finite sample distribution of LRT

As mentioned above, we now consider a test for systematic parameter differences

involving all period effects and the cohort effect, that is, s ¼ 0 and

h ¼ hr ¼ ðjð1Þt ; jð2Þt ; jð3Þt ; cð4Þc Þ. The null hypothesis and alternative are given in

(14), and the LRT statistic is defined in (17) which simplifies to

C ¼ �2log
Lðxjhr0Þ
LðxjĥrÞ

ð18Þ

since s ¼ 0.

As in Sect. 3, we choose the male population in England and Wales as our base

case and set h0 ¼ ĥ
EW

.

To investigate the finite sample properties of the LRT in small populations we

apply a parametric bootstrap procedure in which we simulate N mortality scenarios,

estimate the parameter vector h as in Sect. 3 and apply the LRT in each scenario.

More precisely we use the following steps to find a bootstrap approximation of the

finite sample distribution of C: for different values of w and for each scenario

j ¼ 1. . .N we

1. simulate Dw
j as in (6),

2. find the estimate ĥ
w

j as in (7),

3. calculate the realisation of the LRT statistic Cw
j as in (18) and

2 See [19] for more details about the likelihood ratio test and the asymptotic distribution of the LRT

statistic.
3 See [32] for more details about testable hypotheses.
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4. calculate the p-value Pw
j based on the asymptotic v2-distribution as Pw

j ¼
P½X[Cw

j � where X is has v2-distribution with a degrees of freedom.

The degrees of freedom of the v2 distribution in step 4 should be the effective

number of parameters denoted by a, which is the total number of parameters r less

the number of constraints, that is

a ¼ 3ny þ nc � 3

where ny is the number of years, and nc ¼ ny þ na � 1 is total number of cohorts in

a given dataset without removing short cohorts. In our case, ny ¼ 51,

nc ¼ 51þ 40� 1 ¼ 90, hence a ¼ 240. After applying the parametric bootstrap

method we can generate the distribution of the test statistic. We expect that the

distribution of Cw should be approximately symmetric around 240.

For any population size w we can now find the empirical distribution function of

CW based on the sample Cw
1 ; . . .;C

w
N . Furthermore, if the asymptotic v2 approxi-

mation is accurate, the p-values Pw
1 ; . . .;P

w
N should be independent and uniformly

distributed on [0, 1]. The cumulative distribution of the test statistic Cw and the p-

values Pw for all considered population sizes w are shown in Fig. 11 for N ¼ 1000.

Figure 11a shows that the empirical distribution of Cw is indeed centred around

a ¼ 240. We also observe in Fig. 11b that the cumulative distribution function of

the p-values resembles the distribution function of the uniform distribution on

[0, 1]. Both results indicate that the v2 approximation for the distribution of Cw

under the null hypothesis is very good for all values of w considered.

5.3 Power of the likelihood ratio test

In the last section, we carried out the likelihood ratio test for the parameter

difference and found that the v2 approximation does not fail to capture the feature of

200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

test.stats

P
er

ce
nt

w=1
w=0.1
w=0.01
w=0.001
Gamma=240
p=0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p.values

P
er

ce
nt

w=1
w=0.1
w=0.01
w=0.001

(a) Test Statistics, Γw (b) P-values, Pw

Fig. 11 Likelihood ratio test: a empirical CDF’s of test statistics for sample size N ¼ 1000. b empirical
CDF’s of asymptotic p-values. Results shown for populations of w ¼ 1 (solid line), w ¼ 0:1 (dashed line),

w ¼ 0:01 (dotted line) and w ¼ 0:001 (dot dashed line). The mean of the asymptotic v2240 distribution is

also shown as the vertical dashed line in plot (a)
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the test statistic Cw when H0 holds. We will now investigate how the population size

affects the power of LRT. In general, the power of a binary hypothesis is the

probability of correctly accepting the alternative hypothesis when it is true.4

As usual the power of a test is defined as

ProbðReject H0 jH1 is TrueÞ:

To evaluate the power of the LRT with a parametric bootstrap procedure similar to

the one used in the previous section we need to generate scenarios under the

alternative. So far we have considered a very general alternative hr 6¼ hr0. We will

now need to specify this alternative further. To this end we define four alternative

models and investigate the power assuming that the ‘‘true’’ data generating model is

one of those alternatives. The four models we consider for the alternative shift or

scale one of the period effects or the cohort effect estimated from the England and

Wales data.

More specifically, the alternatives we consider are:

• hð1Þ ¼ ðĵð1Þ0 þ k; ĵð2Þ0 ; ĵð3Þ0 ; ĉð4Þ0 Þ
• hð2Þ ¼ ðĵð1Þ0 ; ĵð2Þ0 þ k; ĵð3Þ0 ; ĉð4Þ0 Þ
• hð3Þ ¼ ðĵð1Þ0 ; ĵð2Þ0 ; ĵð3Þ0 þ k; ĉð4Þ0 Þ
• hð4Þ ¼ ðĵð1Þ0 ; ĵð2Þ0 ; ĵð3Þ0 ; kĉð4Þ0 Þ

We then evaluate the power of the LRT against each of those alternatives with

different values of k. Note that we scaled the cohort effect by k units instead of

shifting it since shifting the cohort effect would result in the same fitted mortality

rates as shifting jð1Þt in hð1Þ. We note that a more general alternative could be

considered by allowing for combinations of the above. However, we wish to focus

on the impact of misspecifying individual parameters and the power of the test to

detect those misspecification.

We can now proceed as in the previous section with simulating death counts and

then apply the LRT for different alternatives and different values of k. We define

D
w;ðiÞ
j ðt; xÞ to be the simulated deaths in scenario j ¼ 1. . .N for the population of size

wE0ðt; xÞ using the parameter hðiÞ in our model, that is,

D
w;ðiÞ
j ðt; xÞ� PoisðmðhðiÞ; t; xÞwE0ðt; xÞÞ

for any i ¼ 1; 2; 3; 4, where m is defined in (2) and (3). Note that death counts also

depend on k.

Using the simulated death counts D
w;ðiÞ
j we obtain the MLE ĥ

w;ðiÞ
j as in (7). We

then use the asymptotic v2-distribution to test the null hypothesis that the parameters

of our model are equal to the parameters obtained from the England and Wales

populations. The p-values P
w;ðiÞ
j ¼ P

w;ðiÞ
j ðkÞ are then calculated as in step 4 in the

4 See [15] for more details on statistical power.
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previous section, and the null hypothesis is rejected in any scenario j for which

P
w;ðiÞ
j \0:05, that is, the significance level of the test is 0.05.

The power of the LRT for any fixed alternative i, relative population size w and

fixed k is the proportion of the simulated p-values which are less than 0.05, that is,

we count the number of scenarios for which the null hypothesis is rejected. More

specifically, we define the random variables

R
w;ðiÞ
j ðkÞ ¼ 1 if P

w;ðiÞ
j ðkÞ\0:05( H0 rejected)

0 otherwise

(

Rw;ðiÞðkÞ ¼ 1

N

XN

j¼1

R
w;ðiÞ
j ðkÞ

ð19Þ

so that Rw;ðiÞðkÞ is the proportion of scenarios in which the null hypothesis is

rejected among N simulated scenarios. We call Rw;ðiÞðkÞ the empirical rejection rate.

Since we are considering independent scenarios, Rw;ðiÞðkÞ has a Binomial

distribution,

NRw;ðiÞðkÞ�Bin
�
N; pw;ðiÞðkÞ

�
ð20Þ

where pw;ðiÞðkÞ is the (unknown) power of the LRT if alternative hðiÞ with parameter

k is the true parameter set for the simulated death counts. Therefore, the empirical

rejection rate Rw;ðiÞðkÞ is an unbiased estimator for the power pw;ðiÞðkÞ and the

estimated standard deviation of Rw;ðiÞðkÞ can easily be found from (20) in the usual

way.

Then we investigate sensitivity of the power with respect to the size of k and the

size of population w. for each of the four cases, hð1Þ; . . .; hð4Þ, we consider a set of

values for k that are regularly spaced.

Figure 12 shows the obtained estimates R
w;ðiÞ
j ðkÞ for the power as a function of k

for different relative population sizes w. Note that for each alternative hðiÞ and any

fixed k we have simulated N ¼ 100 scenarios, which is less than in the previous

section. The reason is that we need to simulate those scenarios for each combination

of i (alternative) and k, which makes the total number of simulated scenarios very

large.

Unsurprisingly, the power of the LRT is increasing in k for any hðiÞ and relative

population size w; the more we shift/scale the null hypothesis, the easier it is for the

test to detect any shift/scaling. For the three period effects, decreasing the

population size will greatly reduce the capability of LRT to detect the same amount

of shift to a single parameter. We can also compare these plots with the earlier Fig. 2

which includes distributions of parameter estimates resulting from sampling

variation. By way of example, for w ¼ 0:01 the width of the confidence interval in

Fig. 2e for jð3Þt;w is about 0.005. This is much larger than the shifts that are considered

in the power plot in Fig. 12. The reason why the latter values are so much lower is

218 L. Chen et al.

123



because we apply a systematic adjustment to all of the jð3Þt;w, in contrast to random

adjustments (due to sampling variation) in the former.

6 Impact of parameter misspecification on mortality rates and annuities

Wenow investigate how significant the impact of shifting and scaling parameters is on

the fitted mortality rates and corresponding annuity prices.We consider again the four

alternatives in the previous section. For each of those and for each relative population

size w we determine the value of k that results in a power of 50% of the LRT, that is,

there is a 50% probability that the LRT will detect the wrong model and reject the null

hypothesis. Those values are denoted by kw;ðiÞ0:5 and shown in Table 3.

Fig. 12 The empirical rejection rates Rw;ðiÞðkÞ under the LRT together with error bars for relative
population sizes w ¼ 1 (dashed line), w ¼ 0:1 (long dashed line) and w ¼ 0:01 (dotted line). The width of
the error bars is one standard error based on (20)

Table 3 The table contains the

size of shift required for 50%
power when each parameter is

shifted separately, with respect

to population w ¼ 1; 0:1; 0:01

Parameter shifted w ¼ 1 w ¼ 0:1 w ¼ 0:01

kw;ð1Þ0:5
0.003 0.006 0.02

kw;ð2Þ0:5
0.0003 0.0006 0.002

kw;ð3Þ0:5
0.0000025 0.000005 0.00018

kw;ð4Þ0:5
1.03 1.09 1.32

Small population bias and sampling effects... 219

123



We then calculate fitted mortality rates using the model in (2) and (3) with the

following parameter constellations:

• hw;ð1Þ0:5 ¼ ðĵð1Þ0 þ kw;ð1Þ0:5 ; ĵð2Þ0 ; ĵð3Þ0 ; ĉð4Þ0 Þ
• hw;ð2Þ0:5 ¼ ðĵð1Þ0 ; ĵð2Þ0 þ kw;ð2Þ0:5 ; ĵð3Þ0 ; ĉð4Þ0 Þ
• hw;ð3Þ0:5 ¼ ðĵð1Þ0 ; ĵð2Þ0 ; ĵð3Þ0 þ kw;ð3Þ0:5 ; ĉð4Þ0 Þ
• hw;ð4Þ0:5 ¼ ðĵð1Þ0 ; ĵð2Þ0 ; ĵð3Þ0 ; kw;ð4Þ0:5 ĉð4Þ0 Þ

To quantify the change in fitted mortality rates we calculate the following ratio

qw;ðiÞt;x ¼ mðhw;ð1Þ0:5 ; t; xÞ
mðĥ0; t; xÞ

for each i ¼ 1; 2; 3; 4 and different values of w. We expect that shifting jð1Þt , jð2Þt and

jð3Þt will result in a parallel shift upwards, tilting rates in an anti clockwise direction

and add some concavity to the rates respectively. This can indeed be seen in Fig-

ure 13 where we plot the ratio qw;ðiÞt;x for the year t ¼ 2011. Figure 13d suggests that

scaling cð4Þc tilts and introduces more fluctuation to the ratio. For all the four

parameters, reducing the relative population size w increased the relative change

qw;ðiÞt;x since kw;ðiÞ0:5 increases. This confirms the intuitive idea that even misspecified

Fig. 13 The impact of shifting each parameter separately on the estimated death rate of England and
Wales. The shift is determined when it results in 50% power for each population w ¼ 1 (solid line),
w ¼ 0:1 (dashed line) and w ¼ 0:01 (dotted line)
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parameters which produce significant changes in the fitted mortality rates are hard to

detect with an LRT when the exposures are small.

From a financial point of view the effect on fitted mortality rates is only relevant

in so far as annuity prices are affected. We will therefore consider the following

annuities and discuss the effect of the four alternatives specified above on their

values:

• A temporary annuity of £1 per annum payable annually in arrears to a life now

aged 65 exactly, starting at the beginning of year 2012 with term of 25 years. Its

expected present value is calculated as:

a65:25 =
25∑

j=1

S(T + j, 65)vj

• An annuity of £1 per annum payable annually in arrears to a life now aged 55

exactly, deferred for 10 years, starting at the beginning of year 2012 with term of

25 years. Its expected present value is:

10|a55:25 =
35∑

j=11

S(T + j, 55)vj

where v is the discount factor, SðT þ t; xÞ is the survival index for the probability of

an individual aged x exactly at the start of year T, that will survive for the next t

years. We assume the interest rate of i ¼ 2%. The reason for investigating the

deferred annuity is that Fig. 2g suggests that the estimates of cohort effect at

c ¼ 1946 is approximately zero and the effect of scaling cohort estimates may not

be obvious on the annuity price but more obvious for .

We project the period and cohort effects in hw;ðiÞ0:5 (i ¼ 1; 2; 3; 4) and ĥ
EW

forward

for 35 years as in Sect. 4 where we use the point estimates defined in (9) and (10) for

the parameters of the random walk for the shifted period effects, that is, we do not

consider uncertainty about the drift and variance matrix of the random walk.

Annuity prices are calculated for each sample path and we then calculate the

average annuity price for each w with the ith parameter shifted or scaled. The results

are shown in Tables 4 and 5.

The effects of shifting the period effects and scaling the cohort effect are

somewhat varied. As might be expected, the impact on prices is most obvious for

w ¼ 0:01. The impact on both types of annuity is straightforward to see for jð1Þ: the
shift pushes up mortality rates at all ages and lowers prices. For jð2Þ there is more

impact on the age-65 annuity than the age-55 deferred annuity as the shift lowers

mortality at younger ages and raises it at higher ages. For jð3Þ, also, the impact is
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different at different ages. Finally, for cð4Þ, the impact of scaling simply depends on

the sign and magnitude of the value of cð4Þ for the cohort being priced.

Generally shifting or scaling the parameter estimates has no obvious effect on the

annuity price and smaller populations can be affected more. Thus for testing a null

hypothesis H0 : h
w¼0:01
r ¼ ĥ

EW
, if we accept H0 when, in fact, they are actually

different (type II error) the financial consequence of this type II error will be small

in our case. In other words, the fact that we have accepted H0 means that hw¼0:01
r ,

while not identical, must be very close to ĥ
EW

, and that, therefore, any error in

pricing will also be very small.

7 Likelihood ratio test for the cohort effect

The general form of the LRT as reviewed in Sect. 5.1 allows us to test a null

hypothesis about parts of the parameter vector h (restricted by the specified

identifiability constraints as part of the model) rather than the entire

h ¼ ðjð1Þt ; jð2Þt ; jð3Þt ; cð4Þc Þ. Testing parts of h is particularly relevant if mortality

rates in a rather small population are modelled using estimated period or cohort

effects from a larger population. Setting one or more of the components of h equal

to the function of corresponding parameters estimated from the large population

Table 4 The impact of shifting each parameter separately on the price of a twenty five-year temporary

annuity for an individual aged at 65

Parameter shifted England and Wales w ¼ 1 w ¼ 0:1 w ¼ 0:01

jð1Þ 14.67466 14.66393 14.65318 14.60280

jð2Þ 14.67466 14.66887 14.66307 14.63588

jð3Þ 14.67466 14.67500 14.67534 14.69850

cð4Þ 14.67466 14.66997 14.66056 14.62441

The shift is determined when it results in 50% power for each population w ¼ 1; 0:1; 0:01, which are

shown in Table 3. We assume an interest rate of 2%

Table 5 The impact of shifting each parameter separately on the price of a ten-year deferred twenty five-

year temporary annuity for an individual aged at 55

Parameter shifted England and Wales w ¼ 1 w ¼ 0:1 w ¼ 0:01

jð1Þ 11.96545 11.95599 11.94652 11.84214

jð2Þ 11.96545 11.96358 11.96169 11.95266

jð3Þ 11.96545 11.96565 11.96584 11.97920

cð4Þ 11.96545 11.96815 11.97355 11.99411

The shift is determined when it results in 50% power for each population w ¼ 1; 0:1; 0:01, which are

shown in Table 3. We assume an interest rate of 2%
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reduces the dimension of the parameter vector which needs to be estimated from the

small population where parameter uncertainty is rather strong as we have seen in

Sect. 3. The example we have in mind is a pension fund that uses national mortality

data to improve its mortality models, or when the mortality experience in a small

country is modelled based on the combined experience of other similar countries.

In the reminder of this section we will use the LRT to test a null hypothesis about

the cohort effect c. In our general setting of Sect. 5.1 this means that

hr ¼ c and hs ¼ ðjð1Þt ; jð2Þt ; jð3Þt Þ:

Our null hypothesis is then that c ¼ c0 where c0 is a given vector of cohort effects,

for which we later use an estimated cohort effect from a different population. We

can now write the hypotheses as in (14) and proceed as in Sect. 5.2 to find the

distribution of the LRT statistic in (17) for a finite sample of death counts from a

small population.

For practical relevance we base our simulation study on the female and male

populations in England and Wales. We choose c0 ¼ ĉEW , which is the estimated

cohort effect from the mortality data for males in England and Wales. It is worth

noting that, as ĉEW already satisfies the identifiability constraints, the null hypothesis

H0 : c ¼ c0 has no testability problems under the given identifiability constraints

defined in the model system. To investigate finite sample properties of C we will

need to specify a full parameter vector h to simulate scenarios for the death counts.

Having fixed the cohort effect c0 we choose the period effects to be the estimated

period effects from data for the female population in England and Wales assuming

that the cohort effect for those data is actually c0. As we are mainly interested in

small populations we will consider deaths count scenarios for populations which

have exposures equal to wE0 where E0 is here the exposure for the female

population in England and Wales.

More specifically, we first find the MLE ~hs ¼ arg max hsLðxjhr0 ¼ c0; hsÞ of the
period effects hs ¼ ðjð1Þt ; jð2Þt ; jð3Þt Þ from data for females assuming that the cohort

effect is indeed c0 (which is the estimated cohort effect for males), see (16). Note

that no constraints are applied for finding ~hs since the cohort is fixed and therefore

there is no identifiability problem. We then generate N realisations of the value of

the test statistic Cw for different values of the relative population size w using the

following algorithm:

1. Simulate death counts Dw
j as in (6) using the parameter vector

~h ¼ ð~hs; hr0Þ ¼ ð~jð1Þt ; ~jð2Þt ; ~jð3Þt ; c0Þ

to obtain scenarios Dw
j for different values of the relative population size w.

The period effects ~j are estimated from data for females with the cohort effect

fixed to c0. The exposure is wE0 where E0 is the exposure for the female

population in England and Wales.

2. Find the MLE ~hs;j of period effects j in scenario j assuming that the null

hypothesis holds, as in (16).
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3. Find the unrestricted MLE ĥj as in (15).

4. Calculate the value of the test statistic Cw
j in (17) in each scenario j.

5. Calculate the p-values Pw
j based on the asymptotic v2-distribution with a

degrees of freedom, where a is the number of parameters (cohorts) r minus the

number of constraints as in Sect. 5.2. For our data set we obtain a ¼ 87.

The simulated distribution functions of the LRT statistic Cw and the p-values Pw are

shown in Fig. 14. The results suggest that changing the size of the population has no

significant impact on the distribution of Cw and that the p-values are roughly

uniformly distributed for all w, which is an indication that the v2-approximation

works well for our data set as we have also found in Sect. 5.2 where the full

parameter vector was tested.

8 Empirical examples

We apply the LRT for the cohort effect in two empirical studies.

8.1 Females vs. males in England and Wales

The population for which we wish to test the cohort effect first is the female

population in England and Wales that we already considered in our simulation

study. Our null hypothesis is therefore that the true cohort effect for the female

population in England and Wales is equal to the estimated cohort effect for males in

England and Wales. Note that this is different from testing the hypothesis that the

male and female population share the same (true) cohort effect since we ignore the

uncertainty about the estimated cohort effect for males.
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Fig. 14 The results of likelihood ratio test, with distributions of test statistics (a) and p-values (b), for the
population of w ¼ 10 (solid line), w ¼ 1 (dashed line), w ¼ 0:1 (dotted line), w ¼ 0:01 (dashed dotted

line) and w ¼ 0:001. The left vertical dashed line is the mean of normal approximation for the v287, at
x ¼ 87. The right dashed line at x ¼ 110 is the true 95% quantile of population w ¼ 1

224 L. Chen et al.

123



To illustrate the difference between the two cohort effects we plot in Fig. 15 the

estimated cohort effects for females and males. There are fairly strong similarities

between the two curves after about 1910, but there are also significant qualitative

differences before 1900. To check empirically, that these differences are not simply

the result of the identifiability constraints, one can plot ĉð4Þ;M � ĉð4Þ;F . If this looks
quadratic then the differences could, simply, be due to the identifiability constraint.

But for these data, a plot of ĉð4Þ;M � ĉð4Þ;F would clearly not be quadratic (exhibiting

more of a cubic shape).

This difference can be confirmed more formally using the LRT with the null

hypothesis that the females have the same cohort effect as the previously estimated

males cohort effect. The test statistic C is approximately 6311, which is an

extremely high value for a v2-distribution with 87 degrees of freedom and is also

very high compared to the values of C observed in our simulation study, see Fig. 14.

The p-value is therefore very close to zero, and we reject the null hypothesis that the

cohort effect fro the mortality of the female population is the same as the previously

estimated cohort effect for the male population.

8.2 Male mortality in Scotland vs. England and Wales

A second, and more intriguing, empirical example concerns the cohort effects

estimated from mortality data for the male population in England and Wales versus

the male population in Scotland. Figure 16 compares the independently-estimated

cohort effects with a confidence interval added around the Scottish estimates.

Compared to Fig. 15, the two curves here look much more similar, with the pattern

of ĉð4Þ;EW � ĉð4Þ;S again not like a quadratic function with respect to cohort year

c. On the other hand, we find that most of the cohort effects for males in England

and Wales lie outside of the confidence interval calculated for Scottish males. This
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Fig. 15 The estimates of cohort effect, for England and Wales males (solid line) andfemales (dashed
line), age 50 to 89 last birthday, over year 1961 to 2011
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suggests that although the two populations have similar pattern for the cohort

estimates, the difference might still be significant.

For the LRT we again choose c0 ¼ ĉEW and then test the hypothesis that the true

cohort effect for Scottish males is equal to c0. The 99% quantile of a v2-distribution
with 87 degrees of freedom is approximately 121. For the test statistic we find

C ¼ 193:37 and we therefore reject the null hypothesis and conclude that the cohort

effect in Scotland is significantly different from the estimated cohort effect for

England and Wales. This indicates that there might be factors in the Scottish male

population that result in significant differences throughout time. However, we might

speculate that there is a common cohort effect, that is, for some reason, magnified in

Scotland. Investigating this in detail is beyond the scope of this paper, but we

speculate that a magnified effect might be the result of socio-economic differences

between the two populations: for example, cohort effects might be greater in lower

socio-economic groups.

9 Conclusion

In this paper, we investigated the finite sample distribution of the maximum

likelihood estimators for the parameters of a stochastic mortality model. We found

that the size of a population has a significant effect on the uncertainty about the

estimated parameters and mortality projections. In particular, we found that there

exists a bias in the estimated covariance matrix of the random walk fitted to the

period effects when the size of the underlying population is small. As a

consequence, prediction intervals are rather wide for small populations even when

parameter uncertainty is ignored.

To investigate if parameters estimated from larger populations can be used to

generate scenarios for smaller populations we investigated how a likelihood ratio

Fig. 16 The estimates of cohort effect, for the males of England and Wales (solid line )and Scotland
(dotted line), age 50 to 89 last birthday, over year 1961 to 2011. The dashedlines are the CI for the cohort
effect of Scotland. The upper bound is 95% quantile ofthe distribution and the lower bound is 5% quantile
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test performs when applied to the mortality experience of a small population. We

found that the finite sample distribution of the test statistic is very close to the

asymptotically correct v2 distribution and, therefore, the observed rejection rates are

close to the chosen significance level. However, we also found that the power of the

test depends strongly on the population size with the ability of the test to detect

deviations from the null hypothesis being significantly reduced when the size of the

underlying populations is small.

A brief investigation of annuity prices has shown that the misspecification of

parameters has a limited financial impact. Considering shifts in the parameter values

which the LR test would detect with a 50% chance we have seen that the impact of a

small population size is significant for deferred annuities. To have a complete

picture of possible further financial consequences, a more detailed study is required,

which is beyond the scope of this paper.

In our empirical analysis we then applied the LRT, and found that neither of the

mortality rates of the female population in England and Wales and the male

population in Scotland should be modelled with a cohort effect estimated from the

male population in England and Wales.

In this paper, we used the traditional two-stage fitting approach whereby the

period and cohort effects are estimated using the Poisson maximum likelihood

method in the first stage and a time series model is fitted to these effects in the

second stage. We have found that sampling variation in the small population

datasets has significant impact, which can then obscure the true signal in those

effects, and giving rise to misleading forecasts. Bayesian approaches that combines

the two stages into one, e.g., [29], Cairns et al. (2011) and [12]) can be used to

provide a way to address this problem. However, as use of the two-stage approach is

widespread (perhaps because of its relative simplicity) we have, here, attempted the

first systematic analysis of the impact of population size on parameter estimates and

forecasts using the two-stage approach. In this way, users of the two-stage approach

will be better informed about its limitations as well as understanding how the

likelihood ratio test might be used to exploit data from larger populations.
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Derivation of the asymptotic distribution of hw

Recall the log likelihood function

lðhw;Dw
t;x;E

w
t;xÞ ¼

X

t;x

f ðt; x; hwÞ � gðt; x; hwÞ þ hðt; xÞ
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where

f ðt; x; hwÞ ¼Dw
t;xlog½mðt; x; hwÞ�

gðt; x; hwÞ ¼wEw
t;xmðt; x; hwÞ

and h(t, x) is not a function with respect to hw. The form of the column vector hw
with 4nyþ na� 1 dimensions is

hw ¼ ðjð1Þt1;w; . . .; j
ð1Þ
tny;w; j

ð2Þ
t1;w; . . .; j

ð2Þ
tny;w; j

ð3Þ
t1;w; . . .;j

ð3Þ
tny;w; c

ð4Þ
c1;w

; . . .; cð4Þcnyþna�1;w
ÞT

The second derivative of lðhw;Dw
t;x;E

w
t;xÞ is

o2l

oh2w
¼

X

t;x

o2f

oh2w
� o2g

oh2w

For every pair of (t, x), mðt; x; hwÞ is a single value, thus the second derivative of f

and g with respect to hw is a Hessian matrix with 4nyþ na� 1 rows and columns,

with the form as

o2f

oh2w
¼

o2f

ojð1Þ2t1;w

. . .
o2f

ojð1Þt1;woj
ðiÞ
tn;w

. . .
o2f

ojð1Þt1;woc
ð4Þ
cnyþna�1;w

..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

.

o2f

ocð4Þcnyþna�1;woj
ð1Þ
t1;w

. . .
o2f

ocð4Þcnyþna�1;woj
ðiÞ
tn;w

. . .
o2f

ocð4Þ
2

cnyþna�1;w

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

Thus the form of the element at row m and column n is

o2f

ojðiÞm;woj
ðjÞ
n;w

¼ �
Dw

t;x

mðt; x; hwÞ2
omðt; x; hwÞ

ojðiÞm;w

omðt; x; hwÞ
ojðjÞn;w

þ
Dw

t;x

mðt; x; hwÞ
o2mðt; x; hwÞ
ojðiÞm;woj

ðjÞ
n;w

where i; j 2 ð1; 2; 3; 4Þ and are not necessarily the same. Note that jð4Þ represents the
cohort effect for convenience. Same derivation can be done for g, and we have

o2f

ojðiÞm;woj
ðjÞ
n;w

¼ wEw
t;x

o2mðt; x; hwÞ
ojðiÞm;woj

ðjÞ
n;w

Thus for each pair of (t, x), the expected value of the element of the second

derivative of l is

E
o2ðf � gÞ
ojðiÞm;woj

ðjÞ
n;w

" #
¼ �w

Ew
t;x

mðt; x; hwÞ
omðt; x; hwÞ

ojðiÞm;w

omðt; x; hwÞ
ojðjÞn;w
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Thus we have the fisher information matrix given ĥ
EW

as

IðĥEWÞ ¼ w
X

t;x

EEW
t;x

mðt; x; ĥEWÞ
omðt; x; hwÞ

ohw

omðt; x; hwÞ
ohw

� �T
" #					

hw¼ĥEW

:

Further, given t ¼ tm; x ¼ xn,

omðtm; x; hwÞ
ohw

¼ ðomðtm; xn; hwÞ
oqðhw; tm; xnÞ

oqðhw; tm; xnÞ
jð1Þt;w

1t¼tm . . .
omðhw; tm; xnÞ
oqðhw; tm; xnÞ

oqðhw; tm; xnÞ
jð4Þt;w

1t¼tmÞ

where

1t¼tm ¼
n 1 t ¼ tm

0 otherwise:
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